Claude Code Agent
Spickzettel: 7 Bewahrte
Setups fur Teams

Mach Claude Code vom Einzeltool zur Team-Superkraft — Plugins, Agents
und Architekturen, die wdchentlich Stunden sparen

Das Team-Chaos-Problem

Du kennst das: Ein Entwickler entdeckt Claude Code und wird 3x produktiver. Aber wenn

du das aufs ganze Team skalieren willst? Chaos.

Typische Team-Probleme

¢ Inkonsistente Setups — Jeder Dev hat eigene Prompts, Workflows und
"Tricks"

e Kein gemeinsamer Hebel — Wissen bleibt in Silos; kein Compound-Effekt

* Langsames Onboarding — Neue Mitarbeiter brauchen Wochen flr die
ungeschriebenen Regeln

¢ Sicherheitsbedenken — Keine Governance dartber, was die Kl darf

e Context Switching — Tools kommunizieren nicht; Claude kennt deinen Stack
nicht

Meine Geschichte

Nach 500+ Stunden Praxistests mit Claude Code in Beratungsprojekten habe ich
destilliert, was funktioniert — in 7 wiederverwendbare Setups. Das ist keine Theorie — es
sind produktionserprobte Architekturen, die Engineering-Teams taglich nutzen.

Was du bekommst

Dieser Spickzettel kodiert Best Practices fiir Plugins, Agents und Integrationen.
Jedes Setup enthalt:

e Das spezifische Problem, das es lost

Architektur-Diagramm

Copy-Paste Code-Snippets

ROI-Metriken zur Rechtfertigung der Investition

Bereit fir ein individuelles Audit?

Erhalte team-spezifische Empfehlungen und ROI-Projektionen

Team-Audit fiir €997 buchen -

© 2026 codecoast labs GmbH | codecoast.ch

https://codecoast.ch/teams/audit

Multi-Agent Code Review System

Problem: Senior Devs versinken in PRs

Deine Senior Engineers verbringen 40% ihrer Zeit mit Code Reviews. Das meiste davon ist
das Finden derselben Probleme: Style-VerstdBe, fehlende Tests, Sicherheitsliicken. Was,

wenn Kl die repetitiven Checks tbernimmt?

LOSUNG

Setze 5 parallele Review-Agents ein, jeder spezialisiert auf ein Thema:

‘"ﬁv f’\\ Y
A - L /
Bug Hunter Security Style Tests Docs

Jeder Agent lauft parallel bei PR-Erstellung, postet Findings als Kommentare und

eskaliert nur signifikante Issues an menschliche Reviewer.

[Diagramm: PR = 5 parallele Agents > Zusammengefihrte Findings - Human Review Gate]

Slash-Command zum Ausldsen des Reviews
/review-pr --parallel --agents="bugs,security,style,tests,docs"

Beispiel Agent-Prompt (Security)

"Analysiere diesen Diff auf Sicherheitsprobleme: Hardcoded Secrets,
SQL Injection, XSS-Vektoren, unsichere Dependencies.

Output: JSON mit Severity, Zeilennummer, Empfehlung."

Spart 30-40% Senior-Dev-Zeit > €2.400-3.200/Monat pro Senior (bei
€120/Std.)

ROI

© 2026 codecoast labs GmbH | codecoast.ch 3

2} Context Loader mit CLAUDE.md

Problem: Context Switching Killt Produktivitat

Jedes Mal, wenn Claude eine neue Konversation startet, vergisst es deine Architektur,
Namenskonventionen und Tech Stack. Du verschwendest die ersten 5 Minuten mit dem

Wiedererklaren desselben Kontexts.

LOSUNG

Erstelle eine projekt-spezifische CLAUDE.md -Datei im Repo-Root. Claude Code |adt
diese automatisch bei jeder Session und erhalt so persistenten Kontext tber dein
Projekt.

mein-projekt/ p— CLAUDE.md « Auto-geladener Kontext }— src/ |— tests/ |—
package.json L— README.md

CLAUDE.md

Projektlbersicht
E-Commerce API mit Node.js + TypeScript + PostgreSQL.

Architektur

- src/controllers/ - Route Handler
- src/services/ - Business-Logik

- src/models/ - Prisma Schema

Konventionen

- Kebab-case fir Dateien, camelCase flr Variablen

- Alle Endpoints geben { data, error, meta } zuriick
- Tests nutzen Vitest; ausfihren mit “pnpm test’

Befehle
- “pnpm dev' - Dev-Server starten (Port 3000)
- ‘pnpm db:migrate’ - Migrationen ausfiihren

Pro-Tipp

Flge team-spezifische Prompts hinzu wie "Prife immer auf N+1 Queries" oder "Nutze
unseren Custom Logger, nicht console.log". Je spezifischer, desto besser.

Neue Mitarbeiter produktiv in Tagen, nicht Wochen. Null Kontext-
Wiederholung.

© 2026 codecoast labs GmbH | codecoast.ch

() standards Enforcer Hooks

Problem: Inkonsistente Code-Styles

"Kannst du diese Variable umbenennen?" "Dieses Pattern nutzen wir hier nicht." Die Halfte

deiner PR-Kommentare sind Style-Debatten, keine Logik-Diskussionen.

LOSUNG

Pre-commit Hooks, die Claude-gestiitzte Checks ausfihren, bevor Code den PR

erreicht. Probleme werden beim Schreiben gefangen, nicht beim Review.

Pre-commit
git commit - Hook - Claude Check - Pass / Fix
0o

// .husky/pre-commit
#!/bin/sh

Claude Standards-Check auf gestagete Dateien
claude-code check-standards --staged \
--rules="naming, imports,error-handling" \
——fix-minor \
--fail-on-major

Exit-Codes:
@ = Alles gut (oder Minor Issues auto-gefixt)
1 = Major Issues gefunden, Commit blockiert

.claude/standards.yaml
naming:
files: kebab-case
variables: camelCase
constants: SCREAMING_SNAKE_CASE

imports:
order: [builtin, external, internal, relativel]
no-default-export: true

error-handling:
require-try-catch-in: [controllers, services]
custom-error-class: AppError

Reduziert PR-Style-Debatten um 50%. Konsistente Codebase = schnellere
Reviews.

© 2026 codecoast labs GmbH | codecoast.ch

) Auto-Documentation Agent

Problem: Veraltete Dokumentation

Dein README sagt "Fuhre npm start aus", aber ihr seid vor sechs Monaten auf pnpm

gewechselt. API-Docs sind drei Versionen veraltet. Niemand will Docs schreiben.

LOSUNG

Merge-getriggerter Agent, der automatisch Dokumentation aktualisiert, wenn sich

Code andert. Uberwacht strukturelle Anderungen und hélt Docs synchron.

.github/workflows/auto-docs.yml
name: Dokumentation aktualisieren
on:
push:
branches: [main]
paths:
- 'src/**!
- 'package.json'

jobs:
update-docs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Claude Doc Agent ausfihzren
run: |
claude-code agent run doc-updater \
--scope="README .md,docs/api.md" \
——context="AndeIungen in diesem Commit" \
-—auto-commit

Doc Agent Prompt-Template

"Priife die Code-Anderungen in diesem Commit. Aktualisiere Dokumentation:
1. README.md - Befehle, Setup-Anweisungen, Dependencies

2. docs/api.md - Endpoint-Signaturen, Request/Response-Shapes

3. CHANGELOG.md - Eintrag fiir diese Anderung hinzufiigen

Regeln: Bestehende Struktur beibehalten. Nur aktualisieren, was sich gedndert hat.
Unsichere Updates mit [REVIEW NEEDED] markieren."

[ROl Halt Wissen aktuell. Spart 10+ Stunden/Monat bei manuellen Doc-Updates. J

© 2026 codecoast labs GmbH | codecoast.ch 6

B Project Sync mit MCP-Integrationen

Problem: Tool-Wechsel (Jira/Slack/GitHub)

"Lass mich mal das Ticket checken..." Tab-Wechsel. "Ich poste in Slack..." Tab-Wechsel.

"Was war die PR-Nummer?" Tab-Wechsel. Context Switching zerstért deinen Flow.

LOSUNG

MCP (Model Context Protocol) Server, die Claude direkt mit deinen Tools verbinden.
Fragen stellen, Tickets aktualisieren und Nachrichten senden, ohne den Editor zu
verlassen.

O Jira ul Linear
Claude Code)
) Slack -7 Notion
+ MCP
& GitHub B Database

// claude_config.json - MCP Server Setup

{
"mcpServers": {
"jira": {
"command": "npx",
"args": ["@anthropic/mcp-server-jira"],
"env": {
"JIRA_URL": "https://deinteam.atlassian.net",
"JIRA_TOKEN": "${JIRA_API_TOKEN}"
}
Do
"slack": {
"command": "npx",
"args": ["@anthropic/mcp-server-slack"],
"env": {
"SLACK_TOKEN": "${SLACK_BOT_TOKEN}"
}
}
3
}

Jetzt kannst du Claude fragen:

"Was ist der Status von PROJ-1237?"

"Poste eine Zusammenfassung meiner Anderungen in #engineering"
"Erstelle ein Ticket fir diesen Bug, den ich gerade gefunden habe"

[ROl Reduziert Context Switches um 60%. Langer im Flow-Zustand bleiben.

© 2026 codecoast labs GmbH | codecoast.ch

) Ssecurity Auditor Agent

Problem: Schwachstellen in KI-generiertem Code

Kl generiert Code schnell. Manchmal zu schnell. Hardcoded API Keys, SQL Injection-

Vektoren und XSS-Schwachstellen rutschen durch, wenn man schnell unterwegs ist.

LOSUNG

Dedizierter Security Agent, der jede Kl-generierte Anderung auf haufige

Schwachstellen scannt, bevor sie in Produktion geht.

[Diagramm: Code-Anderung - Security Agent Scan - Risk Report - Gate:
Pass/Block/Review]

Security Audit Prompt-Template
"Scanne diesen Code auf Sicherheitsliicken:

CHECKLISTE:

Hardcoded Secrets (API Keys, Passwdrter, Tokens)

SQL Injection-Vektoren (String-Konkatenation in Queries)
XSS-Schwachstellen (unsanitierter User-Input in HTML)
Path Traversal (User-Input in Dateipfaden)

Unsichere Dependencies (bekannte CVEs)

Fehlende Authentication/Authorization Checks

Sensitive Data Exposure (PII in Logs, Error Messages)

O0o0Oo0o0ooao

OUTPUT -FORMAT :

{
"severity": "critical|high|medium|low",
"location": "datei:zeile",
"issue": "beschreibung",
"fix": "empfehlung"
}
Falls keine Issues: { "status": "clean", "confidence": 0.0-1.0 }"

A Wichtig
Verlasse dich nie ausschlieBlich auf Kl flr Security. Nutze dies als First-Pass-Filter, nicht als
Ersatz flr ordentliche Security Audits und Penetration Testing.

[RO! Verhindert kostspielige Breaches. Compliance-Boost fiir SOC2/ISO Audits. J

© 2026 codecoast labs GmbH | codecoast.ch 8

Multi-Feature Execution Loop

Problem: Sequentielle Planung limitiert parallele Arbeit

Du hast 5 Features fir diesen Sprint zu liefern. Aber Claude kann nur an einer Sache

gleichzeitig arbeiten... oder doch?

LOSUNG

Ein Custom Claude SKill, der ein Planungsdokument in parallele Ausfihrung

transformiert. Es zerlegt deine Roadmap in unabhangige Tasks, weist Sub-Agents zu

und loopt bis zur Fertigstellung — ermdglicht 3-5 Features parallel.

So funktioniert es

1. Input: Lade ein Planungsdokument hoch (Feature Specs, Roadmap)

2. Analyse: Claude zerlegt die Arbeit in unabhangige Tasks

3. Delegation: Sub-Agents werden jedem Task zugewiesen

4. Execution Loop: Tasks laufen parallel, mit Iteration bei Fehlern

5. Output: Zusammengefihrte Code-Branches bereit flir Review

Execution Loop Skill Prompt
"Analysiere diesen Plan: [PLAN_DOCUMENT]

PROZESS:

1.
2.

o o0~ W

In unabhdngige Tasks aufteilen (keine Cross-Dependencies)
Flir jeden Task einen Sub-Agent erstellen:

- /code-gen fir Implementierung

- /test flir Test-Coverage

- /doc fur Dokumentation

Alle Tasks parallel ausfihzren

Bei Fehler: Retry mit modifiziertem Ansatz (max 3 Versuche)
Bei Erfolg: Commit auf Feature Branch

Loop bis alle Tasks abgeschlossen

OUTPUT: Zusammenfassung der erledigten Arbeit + Branch-Namen zum Mexrgen"

Git Worktree fiir parallele Entwicklung

Kombiniere dies mit Git Worktrees — jedes Feature bekommt seinen eigenen isolierten
Checkout:

main (primdrer Worktree)

../featurel-worktree -» featurel-branch

../feature2-worktree -» feature2-branch

../feature3-worktree -» feature3-branch

Worktrees flr parallele Features aufsetzen
git worktree add ../featurel-wt featurel-branch
git worktree add ../feature2-wt feature2-branch

Jeder Claude Agent arbeitet in seinem eigenen Worktree
Kein Stashing, kein Branch-Wechsel, keine Konflikte

Mergen wenn fertig
git merge featurel-branch
git worktree remove ../featurel-wt

Build #7 Fortsetzung: Sicherheit & Setup

L\ Sicherheits-Constraints
Guardrails, die du MUSST implementieren:
e Token/Kosten-Caps in Prompts (verhindert unkontrollierte Ausgaben)
¢ Error-Handling Loops mit max. Retry-Limits
e Human-Review Gates vor jedem Merge in main

e (CI-Checks, die kaputte Builds blockieren

Sicherheitsiiberlegungen: Setup-Schritte:
e Enterprise Claude Accounts mit 1. Claude Code Plugin fur Agents
Datenisolation nutzen installieren

¢ Niemals sensitiven Code (Secrets, Pll) in 2. Git Worktrees im Repo konfigurieren

PRI 3. Loop zuerst an Dummy-Feature testen

¢ Integration mit sicherem MCP nur fUr 4. Monitoring via Logs (Output zu

interne Tools Slack/Discord)

e Audit-Logs fur alle Agent-Aktionen

Limits

e Max 5 parallele Tasks (mehr = abnehmender Ertrag + Uberlastung)
e |mmer git worktree prune nach Merges

e CI-Checks auf allen agent-generierten Code erzwingen

¢ Alle Merges reviewen — Kl ist ein Multiplikator, kein Ersatz

ROl 3-5 Features parallel bearbeiten. Spart Wochen pro Sprint-Zyklus.

\

Alles zusammenbringen

Implementierungsreihenfolge

‘#ZCLAUDE.md ’9 #3 Hooks - #1 Review - #6 Security - #5 MCP -

#7 Loops - #4 Docs

Starte mit #2 (CLAUDE.md) — es ist kostenlos, dauert 30 Minuten und verbessert sofort
jede Claude-Interaktion.

Best Practices:

e Plugins und Prompts versionieren

e Dokumentieren, was jeder Agent tut, fir das Team

e Trainings-Sessions beim Rollout neuer Setups

e Vorher/Nachher-Metriken messen, um ROI zu beweisen

© 2026 codecoast labs GmbH | codecoast.ch

10

Skaliere Claude Code fiir dein Team

Du hast jetzt 7 praxiserprobte Setups, um Claude Code vom individuellen Produktivitats-

Hack zur team-weiten Superkraft zu transformieren.

r

€5.000 - €15.000

Geschatzte monatliche Einsparungen (5-Personen Engineering-Team)

.

Was diese Setups erméglichen

e Compound-Effekte — Jedes Setup macht die anderen effektiver

¢ Konsistente Qualitat — Standards automatisch durchgesetzt, nicht durch Debatten
e Schnelleres Shipping — Parallele Arbeit + automatisierte Reviews = kiirzere Zyklen
¢ Geringeres Risiko — Security-Checks fangen Probleme vor Produktion ab

e Besseres Onboarding — Neue Mitarbeiter produktiv in Tagen mit CLAUDE.md

Erhalte individuelle ROI-Projektionen fiir dein Team
Das €997 Team-Audit enthalt:

e 90-minutiger Deep-Dive in euren aktuellen Workflow
e Priorisierte Setup-Empfehlungen fir euren Stack

¢ |ndividuelle ROI-Berechnungen basierend auf
TeamgroBe

* Implementierungs-Roadmap mit Zeitplan

Team-Audit buchen -

Bonus

Antworte auf deine Download-Email flir eine kostenlose 15-miniitige Plugin-Beratung.

Ich beantworte deine spezifischen Fragen zur Implementierung dieser Setups.

codecoast labs GmbH

julian@codecoast.ch | @codecoast

https://codecoast.ch/teams/audit

codecoast.ch

© 2026 codecoast labs GmbH | codecoast.ch

