
Claude Code Agent

Spickzettel: 7 Bewährte

Setups für Teams
Mach Claude Code vom Einzeltool zur Team-Superkraft — Plugins, Agents

und Architekturen, die wöchentlich Stunden sparen

Von Julian, codecoast labs GmbH — 500+ Stunden Claude Code im Praxistest

[Visual: Vernetzte Agent-Nodes mit Plugin-Icons]

Kostenlos für E-Mail-Abonnenten. Skalierbare Setups ohne Chaos.

© 2026 codecoast labs GmbH julian@codecoast.ch

Das Team-Chaos-Problem

Du kennst das: Ein Entwickler entdeckt Claude Code und wird 3x produktiver. Aber wenn

du das aufs ganze Team skalieren willst? Chaos.

Typische Team-Probleme

Inkonsistente Setups — Jeder Dev hat eigene Prompts, Workflows und

"Tricks"

Kein gemeinsamer Hebel — Wissen bleibt in Silos; kein Compound-Effekt

Langsames Onboarding — Neue Mitarbeiter brauchen Wochen für die

ungeschriebenen Regeln

Sicherheitsbedenken — Keine Governance darüber, was die KI darf

Context Switching — Tools kommunizieren nicht; Claude kennt deinen Stack

nicht

Meine Geschichte

Nach 500+ Stunden Praxistests mit Claude Code in Beratungsprojekten habe ich

destilliert, was funktioniert — in 7 wiederverwendbare Setups. Das ist keine Theorie — es

sind produktionserprobte Architekturen, die Engineering-Teams täglich nutzen.

Was du bekommst

Dieser Spickzettel kodiert Best Practices für Plugins, Agents und Integrationen.

Jedes Setup enthält:

Das spezifische Problem, das es löst

Architektur-Diagramm

Copy-Paste Code-Snippets

ROI-Metriken zur Rechtfertigung der Investition

Bereit für ein individuelles Audit?

Erhalte team-spezifische Empfehlungen und ROI-Projektionen

Team-Audit für €997 buchen →

© 2026 codecoast labs GmbH | codecoast.ch 2

https://codecoast.ch/teams/audit

1 Multi-Agent Code Review System

Problem: Senior Devs versinken in PRs

Deine Senior Engineers verbringen 40% ihrer Zeit mit Code Reviews. Das meiste davon ist

das Finden derselben Probleme: Style-Verstöße, fehlende Tests, Sicherheitslücken. Was,

wenn KI die repetitiven Checks übernimmt?

LÖSUNG

Setze 5 parallele Review-Agents ein, jeder spezialisiert auf ein Thema:

🐛
Bug Hunter

🔒
Security

📐
Style

🧪
Tests

📝
Docs

Jeder Agent läuft parallel bei PR-Erstellung, postet Findings als Kommentare und

eskaliert nur signifikante Issues an menschliche Reviewer.

[Diagramm: PR → 5 parallele Agents → Zusammengeführte Findings → Human Review Gate]

Slash-Command zum Auslösen des Reviews

/review-pr --parallel --agents="bugs,security,style,tests,docs"

Beispiel Agent-Prompt (Security)

"Analysiere diesen Diff auf Sicherheitsprobleme: Hardcoded Secrets,

SQL Injection, XSS-Vektoren, unsichere Dependencies.

Output: JSON mit Severity, Zeilennummer, Empfehlung."

ROI
Spart 30-40% Senior-Dev-Zeit → €2.400-3.200/Monat pro Senior (bei

€120/Std.)

© 2026 codecoast labs GmbH | codecoast.ch 3

2 Context Loader mit CLAUDE.md

Problem: Context Switching killt Produktivität

Jedes Mal, wenn Claude eine neue Konversation startet, vergisst es deine Architektur,

Namenskonventionen und Tech Stack. Du verschwendest die ersten 5 Minuten mit dem

Wiedererklären desselben Kontexts.

LÖSUNG

Erstelle eine projekt-spezifische CLAUDE.md -Datei im Repo-Root. Claude Code lädt

diese automatisch bei jeder Session und erhält so persistenten Kontext über dein

Projekt.

mein-projekt/ ├── CLAUDE.md ← Auto-geladener Kontext ├── src/ ├── tests/ ├──
package.json └── README.md

CLAUDE.md

Projektübersicht

E-Commerce API mit Node.js + TypeScript + PostgreSQL.

Architektur

- src/controllers/ → Route Handler
- src/services/ → Business-Logik
- src/models/ → Prisma Schema

Konventionen

- Kebab-case für Dateien, camelCase für Variablen

- Alle Endpoints geben { data, error, meta } zurück

- Tests nutzen Vitest; ausführen mit `pnpm test`

Befehle

- `pnpm dev` → Dev-Server starten (Port 3000)
- `pnpm db:migrate` → Migrationen ausführen

Pro-Tipp

Füge team-spezifische Prompts hinzu wie "Prüfe immer auf N+1 Queries" oder "Nutze

unseren Custom Logger, nicht console.log". Je spezifischer, desto besser.

ROI
Neue Mitarbeiter produktiv in Tagen, nicht Wochen. Null Kontext-

Wiederholung.

© 2026 codecoast labs GmbH | codecoast.ch 4

3 Standards Enforcer Hooks

Problem: Inkonsistente Code-Styles

"Kannst du diese Variable umbenennen?" "Dieses Pattern nutzen wir hier nicht." Die Hälfte

deiner PR-Kommentare sind Style-Debatten, keine Logik-Diskussionen.

LÖSUNG

Pre-commit Hooks, die Claude-gestützte Checks ausführen, bevor Code den PR

erreicht. Probleme werden beim Schreiben gefangen, nicht beim Review.

git commit → Pre-commit

Hook → Claude Check → Pass / Fix

// .husky/pre-commit

#!/bin/sh

Claude Standards-Check auf gestagete Dateien

claude-code check-standards --staged \

 --rules="naming,imports,error-handling" \

 --fix-minor \

 --fail-on-major

Exit-Codes:

0 = Alles gut (oder Minor Issues auto-gefixt)

1 = Major Issues gefunden, Commit blockiert

.claude/standards.yaml

naming:

 files: kebab-case

 variables: camelCase

 constants: SCREAMING_SNAKE_CASE

imports:

 order: [builtin, external, internal, relative]

 no-default-export: true

error-handling:

 require-try-catch-in: [controllers, services]

 custom-error-class: AppError

ROI
Reduziert PR-Style-Debatten um 50%. Konsistente Codebase = schnellere

Reviews.

© 2026 codecoast labs GmbH | codecoast.ch 5

4 Auto-Documentation Agent

Problem: Veraltete Dokumentation

Dein README sagt "Führe npm start aus", aber ihr seid vor sechs Monaten auf pnpm

gewechselt. API-Docs sind drei Versionen veraltet. Niemand will Docs schreiben.

LÖSUNG

Merge-getriggerter Agent, der automatisch Dokumentation aktualisiert, wenn sich

Code ändert. Überwacht strukturelle Änderungen und hält Docs synchron.

[Diagramm: PR Merged → Webhook → Claude Doc Agent → Aktualisierte README/API Docs

→ Auto-commit]

.github/workflows/auto-docs.yml

name: Dokumentation aktualisieren

on:

 push:

 branches: [main]

 paths:

 - 'src/**'

 - 'package.json'

jobs:

 update-docs:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v4

 - name: Claude Doc Agent ausführen

 run: |

 claude-code agent run doc-updater \

 --scope="README.md,docs/api.md" \

 --context="Änderungen in diesem Commit" \

 --auto-commit

Doc Agent Prompt-Template

"Prüfe die Code-Änderungen in diesem Commit. Aktualisiere Dokumentation:

1. README.md - Befehle, Setup-Anweisungen, Dependencies

2. docs/api.md - Endpoint-Signaturen, Request/Response-Shapes

3. CHANGELOG.md - Eintrag für diese Änderung hinzufügen

Regeln: Bestehende Struktur beibehalten. Nur aktualisieren, was sich geändert hat.

Unsichere Updates mit [REVIEW NEEDED] markieren."

ROI Hält Wissen aktuell. Spart 10+ Stunden/Monat bei manuellen Doc-Updates.

© 2026 codecoast labs GmbH | codecoast.ch 6

5 Project Sync mit MCP-Integrationen

Problem: Tool-Wechsel (Jira/Slack/GitHub)

"Lass mich mal das Ticket checken..." Tab-Wechsel. "Ich poste in Slack..." Tab-Wechsel.

"Was war die PR-Nummer?" Tab-Wechsel. Context Switching zerstört deinen Flow.

LÖSUNG

MCP (Model Context Protocol) Server, die Claude direkt mit deinen Tools verbinden.

Fragen stellen, Tickets aktualisieren und Nachrichten senden, ohne den Editor zu

verlassen.

📋 Jira

💬 Slack

🐙 GitHub

Claude Code

+ MCP

📊 Linear

📝 Notion

🗄️ Database

// claude_config.json - MCP Server Setup

{

 "mcpServers": {

 "jira": {

 "command": "npx",

 "args": ["@anthropic/mcp-server-jira"],

 "env": {

 "JIRA_URL": "https://deinteam.atlassian.net",

 "JIRA_TOKEN": "${JIRA_API_TOKEN}"

 }

 },

 "slack": {

 "command": "npx",

 "args": ["@anthropic/mcp-server-slack"],

 "env": {

 "SLACK_TOKEN": "${SLACK_BOT_TOKEN}"

 }

 }

 }

}

Jetzt kannst du Claude fragen:

"Was ist der Status von PROJ-123?"

"Poste eine Zusammenfassung meiner Änderungen in #engineering"

"Erstelle ein Ticket für diesen Bug, den ich gerade gefunden habe"

ROI Reduziert Context Switches um 60%. Länger im Flow-Zustand bleiben.

© 2026 codecoast labs GmbH | codecoast.ch 7

6 Security Auditor Agent

Problem: Schwachstellen in KI-generiertem Code

KI generiert Code schnell. Manchmal zu schnell. Hardcoded API Keys, SQL Injection-

Vektoren und XSS-Schwachstellen rutschen durch, wenn man schnell unterwegs ist.

LÖSUNG

Dedizierter Security Agent, der jede KI-generierte Änderung auf häufige

Schwachstellen scannt, bevor sie in Produktion geht.

[Diagramm: Code-Änderung → Security Agent Scan → Risk Report → Gate:

Pass/Block/Review]

Security Audit Prompt-Template

"Scanne diesen Code auf Sicherheitslücken:

CHECKLISTE:

□ Hardcoded Secrets (API Keys, Passwörter, Tokens)
□ SQL Injection-Vektoren (String-Konkatenation in Queries)
□ XSS-Schwachstellen (unsanitierter User-Input in HTML)
□ Path Traversal (User-Input in Dateipfaden)
□ Unsichere Dependencies (bekannte CVEs)
□ Fehlende Authentication/Authorization Checks
□ Sensitive Data Exposure (PII in Logs, Error Messages)

OUTPUT-FORMAT:

{

 "severity": "critical|high|medium|low",

 "location": "datei:zeile",

 "issue": "beschreibung",

 "fix": "empfehlung"

}

Falls keine Issues: { "status": "clean", "confidence": 0.0-1.0 }"

⚠️ Wichtig

Verlasse dich nie ausschließlich auf KI für Security. Nutze dies als First-Pass-Filter, nicht als

Ersatz für ordentliche Security Audits und Penetration Testing.

ROI Verhindert kostspielige Breaches. Compliance-Boost für SOC2/ISO Audits.

© 2026 codecoast labs GmbH | codecoast.ch 8

7 Multi-Feature Execution Loop

Problem: Sequentielle Planung limitiert parallele Arbeit

Du hast 5 Features für diesen Sprint zu liefern. Aber Claude kann nur an einer Sache

gleichzeitig arbeiten... oder doch?

LÖSUNG

Ein Custom Claude Skill, der ein Planungsdokument in parallele Ausführung

transformiert. Es zerlegt deine Roadmap in unabhängige Tasks, weist Sub-Agents zu

und loopt bis zur Fertigstellung — ermöglicht 3-5 Features parallel.

So funktioniert es

1. Input: Lade ein Planungsdokument hoch (Feature Specs, Roadmap)

2. Analyse: Claude zerlegt die Arbeit in unabhängige Tasks

3. Delegation: Sub-Agents werden jedem Task zugewiesen

4. Execution Loop: Tasks laufen parallel, mit Iteration bei Fehlern

5. Output: Zusammengeführte Code-Branches bereit für Review

Execution Loop Skill Prompt

"Analysiere diesen Plan: [PLAN_DOCUMENT]

PROZESS:

1. In unabhängige Tasks aufteilen (keine Cross-Dependencies)

2. Für jeden Task einen Sub-Agent erstellen:

 - /code-gen für Implementierung

 - /test für Test-Coverage

 - /doc für Dokumentation

3. Alle Tasks parallel ausführen

4. Bei Fehler: Retry mit modifiziertem Ansatz (max 3 Versuche)

5. Bei Erfolg: Commit auf Feature Branch

6. Loop bis alle Tasks abgeschlossen

OUTPUT: Zusammenfassung der erledigten Arbeit + Branch-Namen zum Mergen"

Git Worktree für parallele Entwicklung

Kombiniere dies mit Git Worktrees — jedes Feature bekommt seinen eigenen isolierten

Checkout:

main (primärer Worktree)

../feature1-worktree → feature1-branch

../feature2-worktree → feature2-branch

../feature3-worktree → feature3-branch

Worktrees für parallele Features aufsetzen

git worktree add ../feature1-wt feature1-branch

git worktree add ../feature2-wt feature2-branch

Jeder Claude Agent arbeitet in seinem eigenen Worktree

Kein Stashing, kein Branch-Wechsel, keine Konflikte

Mergen wenn fertig

git merge feature1-branch

git worktree remove ../feature1-wt

© 2026 codecoast labs GmbH | codecoast.ch 9

Build #7 Fortsetzung: Sicherheit & Setup

⚠️ Sicherheits-Constraints

Guardrails, die du MUSST implementieren:

Token/Kosten-Caps in Prompts (verhindert unkontrollierte Ausgaben)

Error-Handling Loops mit max. Retry-Limits

Human-Review Gates vor jedem Merge in main

CI-Checks, die kaputte Builds blockieren

Sicherheitsüberlegungen:

Enterprise Claude Accounts mit

Datenisolation nutzen

Niemals sensitiven Code (Secrets, PII) in

Prompts

Integration mit sicherem MCP nur für

interne Tools

Audit-Logs für alle Agent-Aktionen

Setup-Schritte:

1. Claude Code Plugin für Agents

installieren

2. Git Worktrees im Repo konfigurieren

3. Loop zuerst an Dummy-Feature testen

4. Monitoring via Logs (Output zu

Slack/Discord)

Limits

Max 5 parallele Tasks (mehr = abnehmender Ertrag + Überlastung)

Immer git worktree prune nach Merges

CI-Checks auf allen agent-generierten Code erzwingen

Alle Merges reviewen — KI ist ein Multiplikator, kein Ersatz

ROI 3-5 Features parallel bearbeiten. Spart Wochen pro Sprint-Zyklus.

Alles zusammenbringen

Implementierungsreihenfolge

#2 CLAUDE.md → #3 Hooks → #1 Review → #6 Security → #5 MCP →

#7 Loops → #4 Docs

Starte mit #2 (CLAUDE.md) — es ist kostenlos, dauert 30 Minuten und verbessert sofort

jede Claude-Interaktion.

Best Practices:

Plugins und Prompts versionieren

Dokumentieren, was jeder Agent tut, für das Team

Trainings-Sessions beim Rollout neuer Setups

Vorher/Nachher-Metriken messen, um ROI zu beweisen

© 2026 codecoast labs GmbH | codecoast.ch 10

Skaliere Claude Code für dein Team

Du hast jetzt 7 praxiserprobte Setups, um Claude Code vom individuellen Produktivitäts-

Hack zur team-weiten Superkraft zu transformieren.

€5.000 - €15.000

Geschätzte monatliche Einsparungen (5-Personen Engineering-Team)

Was diese Setups ermöglichen

Compound-Effekte — Jedes Setup macht die anderen effektiver

Konsistente Qualität — Standards automatisch durchgesetzt, nicht durch Debatten

Schnelleres Shipping — Parallele Arbeit + automatisierte Reviews = kürzere Zyklen

Geringeres Risiko — Security-Checks fangen Probleme vor Produktion ab

Besseres Onboarding — Neue Mitarbeiter produktiv in Tagen mit CLAUDE.md

Erhalte individuelle ROI-Projektionen für dein Team

Das €997 Team-Audit enthält:

90-minütiger Deep-Dive in euren aktuellen Workflow

Priorisierte Setup-Empfehlungen für euren Stack

Individuelle ROI-Berechnungen basierend auf

Teamgröße

Implementierungs-Roadmap mit Zeitplan

Team-Audit buchen →

Bonus

Antworte auf deine Download-Email für eine kostenlose 15-minütige Plugin-Beratung.

Ich beantworte deine spezifischen Fragen zur Implementierung dieser Setups.

codecoast labs GmbH

julian@codecoast.ch | @codecoast

https://codecoast.ch/teams/audit

codecoast.ch

© 2026 codecoast labs GmbH | codecoast.ch 11

